Abstract

The extent to which we learn from positive and negative outcomes of decisions is modulated by the neurotransmitter dopamine. Dopamine neurons burst fire in response to unexpected rewards and pause following negative outcomes. This dual signaling mechanism is hypothesized to drive both approach and avoidance behavior. Here we test a prediction deriving from a computational reinforcement learning model, in which approach is mediated via activation of the direct cortico-striatal pathway due to striatal D1 receptor stimulation, while avoidance occurs via disinhibition of indirect pathway striatal neurons secondary to a reduction of D2 receptor stimulation. Using positron emission tomography with two separate radioligands, we demonstrate that individual differences in human approach and avoidance learning are predicted by variability in striatal D1 and D2 receptor binding, respectively. Moreover, transient dopamine precursor depletion improved learning from negative outcomes. These findings support a bidirectional modulatory role for striatal dopamine in reward and avoidance learning via segregated D1 and D2 cortico-striatal pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.