Abstract

The experimentally measured stretching vibrational frequencies of O–D [νO–D(donor)] and C=O [νC=O(donor)] H-bond donor groups can provide valuable information about the H-bonds in proteins. Here, using a quantum mechanical/molecular mechanical approach, the relationship between these vibrational frequencies and the difference in pKa values between H-bond donor and acceptor groups [ΔpKa(donor … acceptor)] in bacteriorhodopsin and photoactive yellow protein environments was investigated. The results show that νO–D(donor) is correlated with ΔpKa(donor … acceptor), regardless of the specific protein environment. νC=O(donor) is also correlated with ΔpKa(donor … acceptor), although the correlation is weak because the C=O bond does not have a proton. Importantly, the shifts in νO–D(donor) and νC=O(donor) are not caused by changes in pKa(donor) alone, but rather by changes in ΔpKa(donor … acceptor). Specifically, a decrease in ΔpKa(donor … acceptor) can lead to proton release from the H-bond donor group toward the acceptor group, resulting in shifts in the vibrational frequencies of the protein environment. These findings suggest that changes in the stretching vibrational frequencies, in particular νO–D(donor), can be used to monitor proton transfer in protein environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call