Abstract
AbstractSoft bio-microcapsules are drops bounded by a thin elastic shell made of cross-linked proteins. Their shapes and their dynamics in flow depend on their membrane constitutive law characterized by shearing and area-dilatation resistance. The deformations of such capsules are investigated experimentally in planar elongation flows and compared with numerical simulations for three bidimensional models: Skalak, neo-Hookean and generalized Hooke. An original cross-flow microfluidic set-up allows the visualization of the deformed shape in the two perpendicular main fields of view. Whatever the elongation rate, the three semi-axis lengths of the ellipsoid fitting the experimental shape are measured up to 180 % of stretching of the largest axis. The geometrical analysis in the two views is sufficient to determine the constitutive law and the Poisson ratio of the membrane without a preliminary knowledge of the shear elastic modulus$G_{s}$. We conclude that the membrane of human serum albumin capsules obeys the generalized Hooke law with a Poisson ratio of 0.4. The shear elastic modulus is then determined by the combination of numerical and experimental variations of the Taylor parameter with the capillary number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.