Abstract

In this paper we develop the metric theory for the outer space of a free product of groups. This generalizes the theory of the outer space of a free group, and includes its relative versions. The outer space of a free product is made of G-trees with possibly non-trivial vertex stabilisers. The strategies are the same as in the classical case, with some technicalities arising from the presence of infinite-valence vertices. In particular, we describe the Lipschitz metric and show how to compute it; we prove the existence of optimal maps; we describe geodesics represented by folding paths. We show that train tracks representative of irreducible (hence hyperbolic) automorphisms exist and that their are metrically characterized as minimal displaced points, showing in particular that the set of train tracks is closed. We include a proof of the existence of simplicial train tracks map without using Perron-Frobenius theory. A direct corollary of this general viewpoint is an easy proof that relative train track maps exist in both the free group and free product case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.