Abstract

Abstract We consider an optimal stretching problem for strictly convex domains in $\mathbb{R}^d$ that are symmetric with respect to each coordinate hyperplane, where stretching refers to transformation by a diagonal matrix of determinant 1. Specifically, we prove that the stretched convex domain which captures the most positive lattice points in the large volume limit is balanced: the (d − 1)-dimensional measures of the intersections of the domain with each coordinate hyperplane are equal. Our results extend those of Antunes and Freitas, van den Berg, Bucur and Gittins, Ariturk and Laugesen, van den Berg and Gittins, and Gittins and Larson. The approach is motivated by the Fourier analysis techniques used to prove the classical $\#\{(i,j) \in \mathbb{Z}^2 : i^2 +j^2 \le r^2 \} =\pi r^2 + \mathcal{O}(r^{2/3})$ result for the Gauss circle problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call