Abstract

The cosmological evolution of topological defect networks can broadly be divided into two stages. At early times they are friction-dominated due to particle scattering and therefore non-relativistic, and may either be conformally stretched or evolve in the Kibble regime. At late times they are relativistic and evolve in the well known linear scaling regime. In this work we show that a sufficiently large Hubble damping (that is a sufficiently fast expansion rate) leads to a linear scaling regime where the network is non-relativistic. This is therefore another realization of a Kibble scaling regime, and also has a conformal stretching regime counterpart which we characterize for the first time. We describe these regimes using analytic arguments in the context of the velocity-dependent one-scale model, and we confirm them using high-resolution $4096^3$ field theory simulations of domain wall networks. We also use these simulations to improve the calibration of this analytic model for the case of domain walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.