Abstract
Wearable electronics, such as smartwatches, VR (virtual reality)/AR (augmented reality) smartglasses, and E-textiles, are an emerging technology platform that is reshaping the way people interact with the surrounding world. However, the power source of these devices can be a critical issue, causing short operational/standby times and frequent charging. Here, a stretchable transparent wireless charging coil fabricated by negative adhesive transfer printing (NATP) is demonstrated. The stretchable transparent conductor is based on the silver nanowire (AgNW)-polyurethane acrylate (PUA) composite with high conductivity and robustness under harsh mechanical treatment. A 10.6 ohm/sq thin film has a transmittance of 84% and is still conductive under a mechanical deformation up to 60% tensile strain. A maximum power of 59 mW (power transfer efficiency ∼24%) is transferred wirelessly. A green-light-emitting diode (LED) was wirelessly powered to illustratively demonstrate the functionality of the system. This work provides an alternative power solution which is compatible with the soft and flexible components of wearable devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.