Abstract
Soft and stretchable nanocomposites can match the mechanical properties of neural tissue, therebyminimizing foreign body reactions to provide optimal stimulation and recording specificity. Soft materials for neural interfaces should simultaneously fulfill a wide range of requirements, including low Young's modulus (<<1MPa), stretchability (≥30%), high conductivity (>> 1000 Scm-1), biocompatibility, and chronic stability (>> 1 year). Current nanocomposites do not fulfill the above requirements, in particular not the combination of softness and high conductivity. Here, this challenge is addressed by developing a scalable and robust synthesis route based on polymeric reducing agents for smooth, high-aspect ratio gold nanowires (AuNWs) of controllable dimensions with excellent biocompatibility. AuNW-silicone composites show outstanding performance with nerve-like softness (250kPa), high conductivity (16000 Scm-1), and reversible stretchability. Soft multielectrode cuffs based on the composite achieve selective functional stimulation, recordings of sensory stimuli in rat sciatic nerves, and show an accelerated lifetime stability of >3 years. The scalable synthesis method provides a chemically stable alternative to the widely used AgNWs, thereby enabling new applications within electronics, biomedical devices, and electrochemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.