Abstract

Superhydrophobic surfaces find extensive applications in various fields, including self-cleaning, liquid manipulation, anti-icing, and water harvesting. To achieve superhydrophobicity, the surfaces are designed with hierarchical nano- and/or microscale protrusions. These structures result in a static contact angle above 150° and a sliding/rolling-off angle below 10° when water droplets deposit on the surface. The combination of hierarchical structures and low-surface energy materials contributes to this unique liquid-repellent property. In addition to liquid repellency, the durability of these surfaces is crucial for practical applications, which has prompted the exploration of stretchable superhydrophobic surfaces as a viable solution. The flexibility of these surfaces means that they are effectively safeguarded against mechanical damage and can withstand daily wear and tear. Over the last decade, considerable research has been dedicated to developing stretchable superhydrophobic surfaces to expand their potential applications. This review provides an overview of stretchable superhydrophobic surfaces, specifically emphasizing current processing strategies and their prospective applications. Additionally, we present a forward-looking perspective on future fabrication methods to create robust superhydrophobic surfaces, further enhancing their practicality and versatility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.