Abstract

Abstract Flexible and stretchable materials are increasingly being investigated for future technological platforms, polymer based materials being the most suitable candidates for those emerging technologies. This work reports on polymer based scintillator composites based on the thermoplastic elastomer Styrene-Ethylene/Butadiene-Styrene (SEBS) and Gd2O3:Eu3+ scintillator nanoparticles, to form a polymer-based flexible and stretchable material for X-ray indirect detectors. Further, visible light yield under X-ray irradiation was improved by the inclusion of 2,5 dipheniloxazol (PPO) and (1,4-bis (2-(5-phenioxazolil))-benzol (POPOP) within the polymer matrix. Together with high levels of stretchability, with deformations up to 100%, the films exhibit suitable performance with low mechanical hysteresis (less than 1.5 MJ/m3 for cycles up to 100% of strain) and reproducibly such as a scintillator material for the conversion of X-ray radiation into visible radiation. The decrease of just ∼13% of the X-ray radiation into visible light upon stretching up to 100% is attributed to a reduction of the effective filler concentration and proves the suitability of the developed materials for large area and stretchable X-ray radiation detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.