Abstract

AbstractContinuous monitoring of human physiological signals is critical to managing personal healthcare by early detection of health disorders. Wearable and implantable devices are attracting growing attention as they show great potential for real‐time recording of physiological conditions and body motions. Conventional piezoelectric sensors have the advantage of potentially being self‐powered, but have limitations due to their intrinsic lack of stretchability. Herein, a kirigami approach to realize a novel stretchable strain sensor is introduced through a network of cut patterns in a piezoelectric thin film, exploiting the anisotropic and local bending that the patterns induce. The resulting pattern simultaneously enhances the electrical performance of the film and its stretchability while retaining the mechanical integrity of the underlying materials. The power output is enhanced from the mechano‐electric piezoelectric sensing effect by introducing an intersegment, through‐plane, electrode pattern. By additionally integrating wireless electronics, this sensing network could work in an entirely battery‐free mode. The kirigami stretchable piezoelectric sensor is demonstrated in cardiac monitoring and wearable body tracking applications. The integrated soft, stretchable, and biocompatible sensor demonstrates excellent in vitro and ex vivo performances and provides insights for the potential use in myriad biomedical and wearable health monitoring applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.