Abstract

www.MaterialsViews.com C O M Stretchable Microfl uidic Radiofrequency Antennas M U N I By Masahiro Kubo , Xiaofeng Li , Choongik Kim , Michinao Hashimoto , Benjamin J. Wiley , Donhee Ham , and George M. Whitesides * C A IO N This paper describes a new method for fabricating stretchable radiofrequency antennas. The antennas consist of liquid metal (eutectic gallium indium alloy, EGaIn [ 1 , 2 ] ) enclosed in elastomeric microfl uidic channels. In particular, a microfl uidic structure made of two types of elastomers (polydimethylsiloxane (PDMS) and Ecofl ex (type 0030, Reynolds Advanced Materials)) with different stiffness has been developed to improve the stretchability and mechanical stability of the antennas. These antennas can be stretched up to a strain [defi ned as the percentage change in length or ( l – l 0 )/ l 0 ] of 120 %. This high stretchability allows the resonance frequencies of the antennas to be mechanically tuned over a wide range of frequencies. The antennas can also be repeatedly stretched, while retaining a high effi ciency (> 95 %) in radiation. “Stretchability” in electronics has the potential to open new opportunities, particularly for large-area devices and systems, and in systems that require the device to conform to a nonplanar surface, or to bend and stretch while in use. [ 3–5 ] Compared to “fl exible” electronics built on nonstretchable polymer or paper substrates, [ 6 , 7 ] stretchable electronics can cover almost arbitrarily curved surfaces and movable parts. Mechanical compliance may increase the comfort of the user for wearable electronics or implantable medical devices, and simplify the integration for a range of applications. [ 3–5 , 8 ] New approaches to stretchable electronics are now being developed. In a recent advance, Rogers et al. [ 4 , 5 ] described stretchable integrated circuits with elongation of up to 100 % using wavy, thin silicon ribbons on pre-stretched elastic substrates. Antennas offer new, attractive applications for stretchable electronics; these applications might include reconfi gurable antennas, [ 9 ] antennas for limited and nonplanar spaces, [ 10 ] and wearable sensors. Two methods are commonly used to build antennas for commercial applications. The most common method uses sheet-metal processing; in this method, a metal sheet is punched, bent, and welded into the desired structure. A second method uses chemical etching and plating to make small patterns of metal. This method can make fl exible antennas by patterning metal on a fl exible substrate. Neither

Highlights

  • This work was performed in part at the Center for Nanoscale Systems (CNS), which is supported by the National Science Foundation under NSF award no

  • This paper describes a method for fabricating highly stretchable and robust antennas for radio-frequency signals

  • The antennas consist of liquid metal enclosed in elastomeric microfluidic channels

Read more

Summary

Published Version Citable link Terms of Use

Masahiro, Xiaofeng Li, Choongik Kim, Michinao Hashimoto, Benjamin J. Advanced Materials 22 (25) (April 22): 2749–2752.

Stretchable Microfluidic Radio Frequency Antenna**
To coaxial cable
Break in EGaIn
Apply epoxy to seal the channels and to fix the connector
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.