Abstract

Iron (III) chloride tetraphenyl porphyrin (FeTPPCl) nanostructure decorated films were grown by thermal evaporation Technique (Edward-306) on p-type Silicon (111)/Al. The picked-up micrographs from the scan electron microscopy (SEM) declared that; the annealed FeTPPCl thin films at 350 ᵒC have a nanostructured decorated surface. An impedance spectrum of the Ag/FeTPPCl/p-Si/Al device is analyzed according to the Series Layer Model (SLM) as LRse[R1C1][R2C2] electrical equivalent circuit. The (Re(Z)-(-Im(Z))) complex-plane of Ag/FeTPPCl/p-Si/Al device is characterized by two composed semicircles with series resistance and induction behavior at higher frequencies. These results may be useful in Organic/Inorganic non-volatile memory scalable devices dependant on the electro‐resistive behavior. There are anomalies recorded types of cyclic (I–V) characteristic curves for the manufactured devices at different backward biasing voltages (under dark condition and illumination at room temperature). The power conversion efficiency (PCE) is 5.73 % at the power of the incident light intensity (Pin = 80 mW/cm2), whereas the projected area of the top electrode ∼ 73.6 × 10−3 cm2. The ideality parameter was larger than unity and the estimated barrier height is 0.46 eV. The series Rs and shunt Rsh resistances are characterized under different backward biasing voltage Vrev = {-2, -3, -4, -6−8, and -10 V} and a constant forward biasing voltage 5 V. When the backward voltage was stretched toward lower voltages (-4, -6, -8 and -10 V), Rsh is decreased as following: Rsh = 4.62, 4.73, 4.78, and 4.87 kΩ, respectively. The maximum values of the change in current (ΔIm) and resistance (ΔRm) are estimated and modulated, mathematically, corresponding to its backward biasing voltages. These results may be supporting utilizing this device in current and resistance electrical switching dependent backward biasing voltage application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.