Abstract

We reported a straightforward and low-cost method to fabricate stretchable biofuel cells by using liquid metal-based metal-polymer conductors. The liquid-metal-based metal-polymer conductors had a conductivity of 2.7 × 105 S/m and a stretchability larger than 200%, giving the biofuel cell good conformability to the skin. The glucose biofuel cells (BFCs) yielded a maximum power density as 14.11 μW/cm2 at 0.31 V with 0.2 mM glucose, while the lactate BFCs reached 31.00 μW/cm2 at 0.51 V with 15 mM lactate. The results of 24 h short circuit current density showed that, with enough biofuel, this patch could be used over the course of an entire day for wearable sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.