Abstract

Stretchability will significantly expand the application scope of electronics, particularly large-area electronics-displays, sensors, and actuators. If arbitrary surfaces and movable parts could be covered with stretchable electronics, which is impossible with conventional electronics, new classes of applications are expected to emerge. A large hurdle is manufacturing electrical wiring with high conductivity, high stretchability, and large-area compatibility. This Review describes stretchable, large-area electronics based on organic field-effect transistors for applications to sensors and displays. First, novel net-shaped organic transistors are employed to realize stretchable, large-area sensor networks that detect distributions of pressure and temperature simultaneously. The whole system is functional even when it is stretched by 25%. In order to further improve stretchability, printable elastic conductors are developed by dispersing single-walled carbon nanotubes (SWNTs) as dopants uniformly in rubbers. Further, we describe integration of printable elastic conductors with organic transistors to construct a rubber-like stretchable active matrix for large-area sensor and display applications. Finally, we will discuss the future prospects of stretchable, large-area electronics with delineating a picture of the next-generation human/machine interfaces from the aspect of materials science and electronic engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.