Abstract

AbstractFlexible photovoltaic devices are promising candidates for triggering the Internet of Things (IoT). However, the power conversion efficiencies (PCEs) of flexible organic photovoltaic (OPV) devices with high conductivity poly(3,4‐ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS) electrodes on plastic are lagging behind the rigid devices due to the low transmittance of polyethylene terephthalate (PET)/PEDOT:PSS. Moreover, the poor stretchability of the commonly used plastic substrates largely hinders the practical application of wearable devices. Herein, a novel stretchable indium tin oxide (ITO)‐free OPV device with a surface‐texturing polydimethylsiloxane (PDMS) substrate for outdoor strong‐ and indoor dim‐light energy harvesting is reported. The high diffuse transmittance and haze effect of the substrate enable stretchable ITO‐free devices, yielding a high PCE of 15.3% under 1 sun illumination. More excitingly, the stretchable device based on textured PDMS/PEDOT:PSS maintains a comparable PCE of 20.5% (20.8% for the rigid device) under indoor light illumination. Notably, the stretchable device is much more insensitive to the light direction, maintaining 38.5% of the initial PCE at an extremely small incident angle of 10° (16.3% for glass/ITO‐based counterpart). The texturing stretchable substrate provides a new direction for achieving high performance and enhanced light utilization for the stretchable light‐harvesting device, suitable for indoor and outdoor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.