Abstract

In this work, we propose the formation of stretchable hydrogels at neutral pH from the physical crosslinking of chitosan (CS) and hyaluronic acid (HA) by polyelectrolyte complexation. A mixture of CS (Mw ≈ 600 kg/mol, degree of acetylation ≈ 50 %) solution and HA (Mw ≈ 77 kg/mol) solution was prepared with an excess of salts screening the electrostatic interactions CS/HA. In a controlled manner, the polyelectrolyte complexation was induced through the progressive dialysis of the salted polymer mixture against a sodium acetate solution (AcONa, 0.01 M) for 7 days. Depending on [HA], various materials were obtained: viscous solutions at [HA] = 0.75 % (w/v); hydrogels at [HA] = 1.50–2.24 % w/v with Young modulus of 14 kPa and stretchable to 200 %. The small angle X-ray scattering characterization of the hydrogels revealed a multiscale organization related to the conformation of the polymers induced by the physical interactions. The dialysis process with AcONa was optimized by adding a dialysis step against a zinc acetate solution containing Zn2+. The combination of polyelectrolyte complexation between CS/HA and metallic complexation between Zn2+ and the polymers led to an enhancement of the hydrogel stretchability up to 400 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call