Abstract

One-dimensional conductive fibers that can simultaneously accommodate multiple deformations are crucial materials to enable next-generation electronic textile technologies for applications in the fields of healthcare, energy harvesting, human-machine interactions, etc. Stretchable conductive fibers (SCFs) with high conductivity on their external structure are important for their direct integration with other electronic components. However, the dilemma to achieve high conductivity and concurrently large stretchability is still quite challenging to resolve among conductive fibers with a conductive surface. Here, a three-layer coaxial conductive fiber, which can provide robust electrical performance under various deformations, is reported. A dual conducting structure with a semisolid metallic layer and a stretchable composite layer was designed in the fibers, providing exceptional conductivity and mechanical stability under mechanical strains. The conductive fiber achieved an initial conductivity of 2291.83 S cm-1 on the entire fiber and could be stretched up to 600% strains. With the excellent electromechanical properties of the SCF, we were able to demonstrate different electronic textile applications including physiological monitoring, neuromuscular electrical stimulation, and energy harvesting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call