Abstract

AbstractThe emerging wearable electronics have significantly motivated the development of fiber‐shaped batteries with excellent electrochemical performance, safety, and flexibility. Aluminum (Al) ion batteries are potential candidates due to their high natural abundance, three‐electron‐redox behavior, and low cost. However, the integration of Al ion battery into wearable electronics remains unexplored. Herein, a stretchable fiber‐shaped aqueous Al ion battery is reported, which involves manganese hexacyanoferrate cathode, graphene oxide decorated MoO3 anode, and hydrogel electrolyte. The resulting fiber‐shaped battery exhibits good stretching properties and cycling stability (91.6% over 100 cycles at 1 A cm−3). Moreover, by employing a rocking‐chair energy storage mechanism, the fiber‐shaped battery offers a high specific capacity of 42 mAh cm−3 at 0.5 A cm−3, corresponding to a high specific energy of 30.6 mWh cm−3. As a demonstration, the fiber‐based Al ion batteries are integrated into wearable textiles to power LED light, demonstrating the feasibility in stretchable and wearable electronics.image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.