Abstract
Stretchable electrodes are an essential component that determines the functionality and reliability of stretchable electronics, but face the challenge of balancing conductivity and stretchability. This work proposes a new conducting concept called the interfacial percolation network (PN) that results in stretchable electrodes with high conductivity, large stretchability, and high stability. The interfacial PN is composed of a 2D silver nanowires (AgNWs) PN and a protruding 3D AgNWs PN embedded on the surface and in the near-surface region of an elastic polymer matrix, respectively. The protruded PN is obtained by changing the arrangements of AgNWs from horizontal to quasi-vertical through introducing foreign polymer domains in the near-surface region of the polymer matrix. The resulting electrode achieves a conductivity of 13500 S cm-1 and a stretchability of 660%. Its resistance changes under stretched conditions are orders of magnitude lower than those of conventional 2D PN and 2D + 3D PN. An interfacial PN electrode made from liquid metal remained its conductivity at46750 S cm-1 after the electrode underwent multiple stretch-release cycles with a deformation of >600%. The concept of interfacial PN provides fruitful implications for the design of stretchable electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.