Abstract

ABSTRACTWe use a photo-patternable silicone polymer to fabricate an elastically deformable encapsulation film on stretchable gold lines that electrically conduct while stretched to >50% strain. To detect bioelectrical signals, these stretchable gold lines are patterned as leads and micro-electrodes. They need to be encapsulated with a material that is electrically insulating, as stretchable as the elastomeric substrate, and that can be readily patterned to define recording sites. First, we evaluate the biocompatibility of the elastic encapsulation polymer by assessing the viability of the organotypic hippocampal slices cultured on it. Then, to test the electrical performance of the encapsulation film under large mechanical stress, we measure the dielectric strength of the encapsulation film to 50% tensile strain. Our findings indicate that the photo-patternable silicone material is a suitable interface toin vitroliving tissue, and is a reliable stretchable insulator for soft and conformable electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.