Abstract

Designing, fabricating, and evaluating stretchable electronics is a growing area of materials research. Electronic devices have traditionally been fabricated using rigid, inorganic substrates (e.g., silicon) with metallic components and interconnections. Conventional electronic devices may face limitations when placed in environments that are dominated by stretchable or three-dimensional structures, including those within the human body. This paper describes the use of pulsed laser deposition to create diamond-like carbon microstructures on polydimethylsiloxane. The viability of human epidermal keratinocyte cells on polydimethylsiloxane surfaces coated with arrays of diamond-like carbon islands was similar to that on unmodified polydimethylsiloxane surfaces, which are commonly used in medical devices. It is anticipated that stretchable electronic devices may be incorporated within novel medical devices and prostheses that interface with stretchable or three-dimensional structures in the human body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call