Abstract
Fabricating sustainable ionic skin with multi-functional outstanding performances using biocompatible natural polymer-based ionogel is highly desired but remains a great challenge up to now. Herein, a green and recyclable ionogel has been fabricated by in-situ cross-linking of gelatin with a green bio-based multifunctional cross-linker of Triglycidyl Naringenin in ionic liquid. Benefiting from the unique multifunctional chemical crosslinking networks along with multiple reversible non-covalent interactions, the as-prepared ionogels exhibit high stretchability (>1000 %), excellent elasticity, fast room-temperature self-healability (>98 % healing efficiency at 6 min), and good recyclability. These ionogels are also highly conductive (up to 30.7 mS/cm at 150 °C), and exhibit extensive temperature tolerance (−23 to 252 °C) and outstanding UV-shielding ability. As a result, the as-prepared ionogel can easily be applied as stretchable ionic skin for wearable sensors, which exhibits high sensitivity, fast response time (102 ms), excellent temperature tolerance, and stability over 5000 stretching-relaxing cycles. More importantly, the gelatin-based sensor can be used in signal monitor system for various human motion real-time detection. This sustainable and multifunctional ionogel provides a new idea for easy and green preparation of advanced ionic skins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.