Abstract

In clinically diagnosed rheumatoid arthritis (RA), studies were conducted to investigate the reflex and passive tissue contribution to measured increases in joint stiffness in the resting upper limb and during constant contractions of an attached muscle. The tonic stretch reflex was induced by a servo-controlled sinusoidal stretch perturbation of the metacarpophalangeal joint of RA patients, and age- and sex-matched controls. The resulting reflexes and mechanical changes in the RA affected joint were explored. Surface electromyographic (EMG) measurements were obtained from first dorsal interosseus muscle. Reflex gain (EMG/joint angle amplitude ratio), phase difference (reflex delay after stretch), coherence square (proportion of EMG variance accounted for by joint angle changes), joint mechanical gain (torque-joint angle amplitude ratio) and mechanical phase difference (torque response delay after stretch) were determined. RA patients showed decreased reflex gain that was partly due to coexistent severe muscle weakness, as determined from maximum voluntary contraction and grip pressure estimates. The decreased reflex gain was most evident at high stretch frequency suggesting a disproportionate loss of the large diameter afferent response and also increased reflex delay in the patients. These changes ensemble suggest significant loss of neural drive to the motor unit population. Patients also showed increased joint stiffness (measured as torque gain) in the contracting muscle, but there was no evidence of reflex activity or increased stiffness at rest. This suggests that the increased joint stiffness in RA was due to changes in the mechanical properties of the active muscle-joint system rather than changes in reflex properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.