Abstract

High-conductance Ca(2+)-activated K(+) (K(Ca)) channels were studied in mouse skeletal muscle fibers using the patch-clamp technique. In inside-out patches, application of negative pressure to the patch induced a dose-dependent and reversible activation of K(Ca) channels. Stretch-induced increase in channel activity was found to be of the same magnitude in the presence and in the absence of Ca(2+) in the pipette. The dose-response relationships between K(Ca) channel activity and intracellular Ca(2+) and between K(Ca) channel activity and membrane potential revealed that voltage and Ca(2+) sensitivity were not altered by membrane stretch. In cell-attached patches, in the presence of high external Ca(2+) concentration, stretch-induced activation was also observed. We conclude that membrane stretch is a potential mode of regulation of skeletal muscle K(Ca) channel activity and could be involved in the regulation of muscle excitability during contraction-relaxation cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.