Abstract
Stretch-activated channels (SAC) are postulated to regulate cell volume. While this hypothesis is appealing, direct evidence is lacking. Using digital video microscopy, we found that pharmacological blockade of SACs alters the cell volume of isolated rabbit ventricular myocytes during hypoosmotic stress. Under control conditions, relative cell volume increased from 1.0 to 1.311 +/- 0.019 after 10 min in 195 mosmol/l solution. The cation SAC blocker gadolinium (Gd3+; 10 microM) reduced the amount of swelling in hypoosmotic solution by 24% and induced a regulatory volume decrease otherwise not observed. In contrast, the anion SAC blocker 9-anthracene carboxylic acid (9-AC; 1 mM) increased swelling by 44% under the same conditions. Based on the direction of SAC currents, Gd3+ and 9-AC are expected to have opposite effects on cell volume. Furthermore, Gd3+ and 9-AC changed cell volume by only approximately 2% in isosmotic solutions when SACs are expected to be closed. This supports the idea that Gd3+ and 9-AC affect stretch-activated transport processes. In contrast, omitting bath Ca2+ did not alter cell volume under iso- or hypoosmotic conditions suggesting stretch-activated Ca2+ influx is not important in setting cell volume. Not all channels can affect cell volume. Opening ATP-sensitive K+ channels with aprikalim (100 microM) or blocking them with glibenclamide (1 microM) did not alter cell volume under isosmotic or hypoosmotic conditions. These data support the idea that SACs are involved in cardiac cell volume regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.