Abstract

Summary results are presented of a comprehensive experimental study to investigate the strength, stress–strain properties, and creep behavior of fine-grained deep sea sediments. Isotropically (CIU) and anisotropically (CAU) consolidated undrained triaxial tests and drained triaxial creep tests were performed on undisturbed and reconstituted–reconsolidated (remolded) samples of smectite-rich and illite-rich deep sea clays from the North Central Pacific.The CIU Mohr–Coulomb parameters for remolded smectite [Formula: see text] were nearly identical to the undisturbed material [Formula: see text]. The parameters for remolded illite [Formula: see text] were also not significantly different than for the undisturbed material [Formula: see text].The undrained shear strength versus water content relationship (qf vs. wf) for remolded smectite is much lower than for the undisturbed material, whereas for illite the remolded strength is only slightly lower. Therefore it appears that smectite is much more sensitive than illite to the type of remolding used in these studies.The CAU tests showed that K0 agrees well with the Jaky equation, [Formula: see text]. The Mohr–Coulomb parameters were somewhat lower than the corresponding CIU results.Undisturbed and remolded samples were tested at stress levels of 10, 25, 40, and 65% of the Mohr–Coulomb strength for the determination of triaxial drained creep properties. Different relationships between stress level, strain, and time were determined for the two materials. A secondary state of creep, defined as a period of constant strain rate, was not consistently observed. Comparisons with terrestrial clays and near shore material display similar strengths of the deep sea sediments and greater deformation potential during long-term loading. Keywords: stress–strain behavior, creep, deep sea sediments, stress–strain–time behavior, triaxial compression tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.