Abstract

Disaster mitigation in the world of civil engineering can do by improving the performance of construction materials using High-Performance Fiber-Reinforced Concrete (HPFRC). The increasing performance of concrete materials positively affects the physical and mechanical properties of the concrete produced, including the modulus of elasticity. Many equations develop to calculate the distribution of stress-strain of concrete material, such as the Madrid Parabola Formula, Desay & Khrisnan Formula, Majewski Formula, Wang & Hsu Formula, and Saenz Formula. The purpose of this study is to investigate a stress-strain distribution equation and the elastic modulus of elasticity of HPFRC using Portland Pozzolana Cement (PPC) with variations in the composition of silica fume and steel fiber and also investigate the formula of the HPFRC stress-strain distribution. The study conduct using f 15 cm x 30 cm cylindrical specimens. The materials are PPC, sand, gravel, water, silica fume additives, superplasticizers, and Dramix @ 3D steel fiber. Silica fume used varies from 0.0% to 15.0% of the weight of cement. While the steel fiber varies from 0.2% to 1.4% of the volume of the concrete mixture. The compressive strength test carries out refers to ASTM C39/C39M-03, 2003. The stress-strain relationship of HPFRC is obtained from the axial deformation measurement using an extensometer. The results of the study compare with some well-known stress-strain relationship equation. From this study, the stress-strain relationship formula of Desay-Khrisnan is rather suitable for the concrete with W/B ratio variation, but not suitable for silica fume and steel fiber content variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.