Abstract

Reinforced masonry (RM) shear walls with boundary elements have been recently presented as a more ductile alternative to RM rectangular shear walls. Evaluating the complete (i.e. including the post-peak branch) compression stress-strain behavior of the confined and unconfined masonry is essential for predicting the seismic response of the RM walls with boundary elements. Recently, the authors investigated the effect of various volumetric ratios of transverse reinforcement, vertical reinforcement ratios, and grout strength on the axial stress-strain behavior of reinforced masonry boundary elements (RMBEs). However, all the specimens had a specific height to thickness ratio (i.e., AR = 5). This study presents the observed stress-strain relationship of seventeen half-scale fully grouted unreinforced and RMBE specimens, built using C-shape blocks, tested under concentric compression loading up to failure. Thus, quantifying the effect of various aspect (height to thickness) and confinement ratios on the RMBEs peak stress, strain corresponding to peak, and post-peak behavior. The results indicate that, as the hoop spacings and/or aspect ratio decreases, the peak stress and post-peak strains increase. Moreover, this study presents a stress-strain empirical model capable of predicting the RMBE stress-strain response by computing the confined and unconfined masonry stress-strain behavior. The model is calibrated using the experimental data of thirty-three RMBE specimens, tested in this study and literature. The proposed model presents an efficient tool that can be implemented in different analytical/numerical packages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call