Abstract

In the rapidly growing field of additive manufacturing (AM), the focus in recent years has shifted from prototyping to manufacturing fully functional, ultralight, ultrastiff end-use parts. This research investigates the stress-strain behavior of an octahedral-and octet-truss lattice structured polyacrylate fabricated using Continuous Liquid Interface Production (CLIP) technology based on 3D printing and additive manufacturing processes. Continuous Liquid Interface Production (CLIP) is a breakthrough technology that grows parts instead of printing them layer by layer. Lattice structures such as the octahedral-and octet-truss lattice have recently attracted a lot of attention since they are often structurally more efficient than foams of a similar density made from the same material, and the ease with which these structures can now be produced using 3D printing and additive manufacturing. This research investigates the stress-strain behavior under compression of an octahedral-and octet-truss lattice structured polyacrylate fabricated using CLIP technology

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call