Abstract

A model of a taper-taper adhesive-bonded joint under cylindrical bending has been derived using first-order laminated plate theory. Shear correction factors were used to account for transverse shear deformation. A FORTRAN program was written to integrate the resulting system of twelve simultaneous, linear, first-order, differential equations with variable coefficients. The Linear Shooting Method was used to solve the model. A finite element model was developed using the COSMOS/M commercial finite element package to verify the analytical model for a cross-ply laminate. The analytical model results agreed well with the finite element models and predicted peak adhesive stresses within about 2% of the finite element model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.