Abstract

A model is presented, relating the velocity shifts of surface acoustic waves (SAW) to the six tensor components of quasistatic stresses. Stress sensitivity is then defined through six independent coefficients, whatever the origin of the stress (direct external forces, thermoelastic stresses) might be. These coefficients, depending on crystal anisotropy, are computed for different cut angles and propagation directions of quartz crystal, and represented as a contour-line mapping. The determination of SAW quartz cuts compensated for both planar isotropic stresses and first-order temperature effects make it possible to define a family of quartz cuts with potentially low stress and temperature sensitivities for oscillator applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.