Abstract

The current experiments occurred in the context of disputes in the literature concerning whether inescapable stress causes differential changes in sensory reactivity, which could lead to differences in many learning procedures. We tested rats for differences in sensitivity and responsivity to acoustic stimuli through the use of the acoustic startle response (ASR) 2 h after stressor exposure and ambulatory activity 24 h later in the open field. Stressed females showed reduced responsivity to acoustic stimuli with no apparent shift in stimulus sensitivity. Males did not show differences in either reactivity index following stressor exposure. Reduced responsivity did not occur if females had been OVX (OVX alone did not effect stimulus responsivity or sensitivity). All groups that experienced tailshock stress also had reduced open field activity 24 h later. Restraint for 2 h did not reduce stimulus responsivity in the ASR or open field activity in female rats. Acute reductions in ASRs after a painful stressor appear to be a feature specific to females, with an apparent role of ovarian hormones as a modulator of the effect. Possible hormone and/or immunological mechanisms of these sex-specific effects are discussed. Understanding the mechanisms of this stressor-induced reduction in sensory reactivity could advance our knowledge of how individual differences in ovarian hormone levels influence the physical and psychological processes by which females acutely respond and later recover from traumatic events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.