Abstract

Ethylene synthesis in vegetative tissues is thought to be controlled by indoleacetic acid (IAA). However, ethylene synthesis in the diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) was much less sensitive to IAA than in the normal variety (VFN8). Yet, mechanical wounding stimulated ethylene production by the mutant. The dgt tomato provides an opportunity to study the regulation of stress ethylene independent of IAA effects. Waterlogging (i.e. anaerobic stress) stimulated production of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in the roots. The ACC was transported to the shoot where it was converted to ethylene. The dgt mutant efficiently utilized ACC for ethylene synthesis under aerobic conditions. The results confirm that the genetic lesion in dgt is located at a step prior to the formation of ACC. Furthermore, induction of ethylene synthesis by anaerobic or mechanical stresses in this mutant is independent of IAA action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.