Abstract

In this work, we study the effect of mismatch strain for coherent interface between the core and the shell of a Type I core/shell quantum dot (QD) on the ground-state energy of a particle in the core/shell QD under the framework of linear elasticity. Closed-form solution of the energy of the particle at ground state for the core and the shell being cubic structure is obtained, and the first order solution of the energy of the particle at ground state for the core and the shell being wurtzite structure is derived. The numerical results show that the energy change at ground state is proportional to hydrostatic stress and nonlinearly increases with the increase of the ratio of the shell thickness to the core radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.