Abstract

When using different formulas for determination of axial and circumferential stresses in the experiments on loading thin-walled tubular specimens with internal pressure the radial stresses are neglected due to their smallness. We propose a novel procedure for determining stresses in the internal pressure loaded thin-walled tubular specimens. The distribution of stresses in the radial direction of a tubular specimen is studied both for the elastic state and for perfectly plastic state according to the Huber – von Mises criterion of an incompressible material. It is shown that the degree of heterogeneity of the stress state depends on the ratio of the wall thickness to the specimen diameter and on the elastic or plastic state of the material. The circumferential stresses are maximal on the inner surface of the specimen and the axial stresses are constant along the radius of the specimen in the elastic state, whereas in the plastic state circumferential and axial stresses are maximal on the outer- and inner surface of the specimen, respectively. The distributions of radial stresses in the elastic and plastic state of the material are almost identical, i.e., both are maximal on the inner surface and equal to zero on the outer surface of the specimen. The values of circumferential and axial stresses on the middle surface of a thin-walled tubular specimen normalized to the internal pressure almost do not depend on the elastic or plastic state of the specimen material thus providing a basis for determination of the mechanical properties of the material from the stress-strain state of the middle surface of the specimen using the Lame formulas for stress calculations. When determining the stress intensity, it is desirable to take into account the radial stresses, since it increases the accuracy of determining the mechanical properties of the material and reduces the sampling range of the yield point for different types of the stress state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.