Abstract

A complete cast crown allows the operator to modify axial tooth contour. The margin should be smooth and distinct and its width has to allow adequate bulk of metal at the margin. The objective of this study was to evaluate, by finite element analysis, the influence of different degree of taper and marginal designs for cast crown preparations, on the stress distribution in teeth and crowns. As experimental model an upper first molar was used. The geometry of the intact tooth were obtained by 3D scanning. The tooth preparations and the complete cast crowns were designed. Models were exported in a finite element analysis software for structural simulations. Von Mises equivalent stresses were calculated and their distribution was plotted graphically. Numerical simulations provide a biomechanical explanation for stress distribution in prepared teeth and overlying crowns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.