Abstract

Abstract The analysis of shells is an important subdivision of the general theory of elasticity, and its application is useful in the solution of engineering problems involving thin-walled structures. A common type of shell is one which possesses symmetry with respect to an axis of revolution. A theory for such shells has been developed by various investigators (1, 2, 3, 6) and applied to a few simple cases such as the cylindrical, spherical, and conical shapes. Boundary conditions, for the most part, have been simple static ones, and conditions of surface loading have been included in certain special cases. This paper extends the theory of axially symmetrical shells by including the body force of rotation about the axis and applies the results to the rotating conical shell. The analysis follows a pattern established by several investigators (1, 2, 3, 6) and for this reason is abbreviated to a considerable extent. Only where the inclusion of the body force makes elucidation advisable or where a slightly different method of approach is used are the steps presented in more detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.