Abstract

Eucalyptus camaldulensis Dehnh. is extensively planted in Thailand to produce wood chips used as raw material for pulp and paper. To promote the utilization of the wood from plantation-grown E. camaldulensis for solid lumber, stress-wave velocity of trees and dynamic Young’s modulus of logs were investigated for 4-year-old trees of eight half-sib families selected for pulpwood production on the basis of the growth characteristics in the previous tree breeding program. For the eight families, the mean stem diameter at 1.3 m above ground level and mean tree height were 7.6 cm and 11.9 m, respectively. The mean stress-wave velocity of eight families was 3.45 km/s. Dynamic Young’s modulus of logs ranged from 7.88 to 17.64 GPa, and the mean value for the eight families was 11.72 GPa. Stress-wave velocity of trees was significantly correlated with dynamic Young’s modulus of logs, suggesting that dynamic Young’s modulus of wood can be evaluated nondestructively by stress-wave velocity of trees. Significant differences in stress-wave velocity and dynamic Young’s modulus of logs were obtained among families. Thus, to promote the utilization of E. camaldulensis wood for solid lumber production, selection of trees with high Young’s modulus should be applied to trees already selected for the growth characteristics in the previous tree breeding program.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.