Abstract
To analyze the stress wave propagation associated with the vortex-induced vibration (VIV) of a marine riser, this paper employed a multi-signal complex exponential method. This method is an extension of the classical Prony’s method which decomposes a complicated signal into a number of complex exponential components. Because the proposed method processes multiple signals simultaneously, it can estimate the “global” dominating frequencies (poles) shared by those signals. The complex amplitude (residues) corresponding to the estimated frequencies for those signals is also obtained in the process. As the signals were collected at different locations along the axial direction of a marine riser, the phenomena of the stress wave propagation could be analyzed through the obtained residues of those signals. The Norwegian Deepwater Program (NDP) high mode test data were utilized in the numerical studies, including data sets in both the in-line (IL) and cross-flow (CF) directions. It was found that the most dominant component in the IL direction has its stress wave propagation along the riser being dominated by a standing wave, while that in the CF direction dominated by a traveling wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.