Abstract
The properties of nanoscale interphase significantly influence the mechanics of load transfer and hence the macroscopic behavior of fiber-reinforced composites. Herein, we present a theoretical framework to study the mechanics of stress transfer through both homogeneous and inhomogeneous interphases in a curved-fiber pull-out test and analyse the stress field in the three-phase composite system based on the shear-lag theory. Explicit expressions are derived to estimate the normal and shear stresses in the fiber, interphase and matrix. The results from the analytical model are validated with those obtained from a finite element analysis. Furthermore, influence of radially modulus graded interphase, according to linear and power laws, on the pull-out performance is also investigated. Graded interphases are observed to reduce the interfacial shear stresses by up to 40% as compared to the homogeneous interphases. The stress transfer in three-phase curved-fiber pullout test considering interfacial debonding and sliding has also been studied. Finally, models are simplified for straight-fiber pullout case considering both homogeneous and graded interphases. The study can serve as a framework to investigate the pull-out characteristics of a curved fiber in nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.