Abstract
Dental implantology has high success rates, and a suitable estimation of how stresses are transferred to the surrounding bone sheds insight into the correct design of implant features. In this study, we estimate stress transfer properties of four commercial implants (GMI, Lifecore, Intri and Avinent) that differ significantly in macroscopic geometry. Detailed three-dimensional finite element models were adopted to analyse the behaviour of the bone-implant system depending on the geometry of the implant (two different diameters) and the bone–implant interface condition. Occlusal static forces were applied and their effects on the bone, implant and bone–implant interface were evaluated. Large diameters avoided overload-induced bone resorption. Higher stresses were obtained with a debonded bone–implant interface. Relative micromotions at the bone–implant interface were within the limits required to achieve a good osseointegration. We anticipate that the methodology proposed may be a useful tool for a quantitative and qualitative comparison between different commercial dental implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.