Abstract
Drought stress affects not only crop growth but also its morpho-physiological and biochemical traits to reduce crop productivity. The study reported in this article was designed and implemented to determine the effects of deficit irrigation and bacterial inoculation on flax plants. For this purpose, seeds were inoculated with Bacillus amyloliquefaciens (B1 ), Bacillus sp. Strain1 (B2 ), and Azotobacter chroococcum (A) as plant growth promoting rhizobacteria (PGPR). The individual inoculated plants were then grown under field conditions in 2015, while individually and in combination in pots in 2016. The irrigation regimes in either experiments included 50, 75 and 100% crop water requirement. Bacterial cultures were observed to produce ammonia (except B2 ), indole acetic acid and siderophores. Results showed that the PGPRs significantly mitigated the effects of water deficit. Compared with the control plants, the bacterially-inoculated plants had an enhanced relative water content, plant height, water-soluble carbohydrate and proline contents and antioxidant enzyme activities, but a decreased malondialdehyde content. B1 exhibited greater effects on most of the traits investigated under the field conditions rather than those with moderate and severe drought stress, while application of the triple bacteria in pots had greater effects on relative water content, carbohydrate and proline contents as well as malondialdehyde. The significant differences in abiotic stress indicators in PGPR-treated plants suggest that these bacteria could be used as biofertilizers to assist plant growth and to reduce the adverse effects of deficit irrigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.