Abstract
Since biotic interactions within the simple terrestrial communities on the Antarctic Peninsula are limited compared with tropical and temperate regions, survival is largely dictated by the numerous abiotic challenges. Our research focuses on adaptations to environmental stresses experienced by the Antarctic midge (Belgica antarctica Jacobs, 1900), the southernmost free-living insect. Midge larvae can survive freezing and anoxia year-round. Not only can frozen larvae undergo rapid cold-hardening (RCH) at temperatures as low as –12 °C, but RCH develops more rapidly in frozen compared with supercooled larvae. Whether larvae overwinter in a frozen state or cryoprotectively dehydrated may depend on hydration levels within their hibernacula. Larvae constitutively up-regulate genes encoding heat shock proteins, as well as the antioxidant enzymes superoxide dismutase and catalase. Larvae accumulate osmoprotectants in response to freezing, desiccation, and exposure to seawater; exposure to one of these osmotic stressors confers cross-tolerance to the others. Molecular responses to dehydration stress include extensive genome-wide changes that include differential expression of aquaporins among tissues, upregulation of pathways associated with autophagy, inhibition of apoptosis, and downregulation of metabolism and ATP production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.