Abstract

Abstract Polysulfide rubbers of various internal structures have been investigated by measurements of continuous and intermittent relaxation of stress and by creep under constant load at temperatures between 35° C and 120° C. Continuous stress relaxation measurements indicate that these rubbers obey approximately the simple Maxwellian law of relaxation of stress, which indicates that one definite type of bond in the network structure is responsible for stress decay. The activation energy for the relaxation process in each of the polysulfide rubbers is nearly the same, indicating that the same type of bond is responsible for the relaxation behavior of all the polysulfides investigated. In contrast to hydrocarbon rubbers, oxygen is not the cause of high temperature relaxation in polysulfide rubbers, nor does heating in air at moderate temperatures for times comparable to the relaxation time produce changes in physical properties as determined by modulus or by appearance of the samples. Several possibilities regarding the mechanism of the relaxation process and the type of bond involved are considered in the light of the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.