Abstract
Classical field theories, together with the Lagrangian and Eulerian approaches to continuum mechanics, are embraced under a geometric setting of a fiber bundle. The base manifold can be either the body manifold of continuum mechanics, the space manifold, or space–time. Differentiable sections of the fiber bundle represent configurations of the system and the configuration space containing them is given the structure of an infinite-dimensional manifold. Elements of the cotangent bundle of the configuration space are interpreted as generalized forces and a representation theorem implies that there exists a stress object representing forces, non-uniquely. The properties of stresses are studied, as well as the role of constitutive relations in this general setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.