Abstract

Classical experimental designs have been popularly employed in establishing robust analytical methods while achieving other advantages, viz., reduction in the number of experiments and hence lower reagent consumption and less laboratory work. To achieve optimum chromatographic condition, a computer-aided Box-Behnken Design (BBD) in ion-pairing stability-indicating RP-HPLC assay of quetiapinefumarate along with its stress related substances has been investigated here, proving to be an invaluable tool in ascertaining a reliable method. The study includes forced degradation of quetiapinefumarateunder acidic, alkaline, photo, oxidative and peroxide stress conditions followed by separation of degradation products. Critical factors including buffer pH, % organic phase (acetonitrile) and concentration of hexane sulphonate (ion-pairing reagent) susceptible to influence the separation (critical resolutions) and total analysis time were investigated by response surface methodology. The best optimal separation condition as obtained was observed on an enable C-18 column (250mm x 4.6mm i.d, 5μm particle size) using mobile phase composed of Phosphate buffer (pH 2.0) containing 0.002mM hexane sulphonate and acetonitrile (74.4:25.6 v/v) at a flow rate of 1.00ml/min. The eluents were observed at 220nm using a PDA detector. Further, the method was validated to ensure its reliability and other regulatory criteria are met.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.