Abstract

Stress analysis on chemical vapor deposition (CVD) diamond films has demonstrated an apparent disagreement among various researchers in recent works even for similar deposition conditions. The type and the value of stress have shown a strong dependence on film thickness, which can be attributed to columnar growth and grain size and boundaries. X-Ray diffraction techniques appeared to be more suitable to study these effects and permit the evaluation of the average stress in larger sample areas when compared with micro-Raman spectroscopy, which feels a local strain inside the grains. In the case of boron-doped diamond films, boron incorporation on substitucional or interstitial sites can produce stresses according to the doping level. In order to investigate these effects, a series of diamond films were deposited on silicon (001) substrate in a hot filament (HF)-assisted CVD reactor at 800°C. The CH 4 flow is kept at 0.5 sccm for all experiments and the H 2 and B 2O 3/CH 3OH/H 2 flows are controlled in order to obtain the desired B/C ratios. Stress behavior in HFCVD boron-doped diamond films has been investigated by X-ray diffraction measurements using the sin 2 ψ technique. Tensile and compressive stresses have been observed and the thermal and intrinsic components have been calculated. The diamond films were characterized by scanning electron microscopy and Raman spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.