Abstract

This article is devoted to the calculated substantiation of lifting (leveling) of a massive reinforced concrete structure which changed its position after uneven settlement. To determine the stress-strain state of the structure, a spatial problem is solved by the method of local variations using 32 node finite elements, based on the energy model of the soil (L.N. Rasskazov) with the use of the Saint-Venant’s principle. The problem is solved without taking into account the effect of the base soil and the filtration regime in it. To evaluate of the sequence of loading of the foundation base of the structure the so-called “sectional lift” is modeled. In this case the load is applied not to the entire area of the basement footing, but only to certain zones (load sections). By calculation, the required value of the applied lift load, the number of application sections of this load, the required and the most adequate boundary conditions of the problem are selected. The stress-strain state of the structure is analyzed during its successive lifting. Information on the order of changing the vertical coordinates of the foundation bottom is given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call