Abstract
A physical cut model is used to describe the changes in the stress-strain state (SSS) in elastoplastic bodies weakened by cracks. The distance between the crack edges is considered to be finite in contrast to the mathematical cut. The interactive layer with a thickness limited by the possibility of using the hypothesis of continuity is distinguished on the physical cut extension. Distribution of stresses and strains over the layer thickness is constant and does not depend on the geometry of the boundary between the cut and the interactive layer. The relationship between stresses and strains is determined by the deformation plasticity theory. The problem of plane strain or plane stress state of an arbitrary finite body weakened by a physical cut is reduced to solving a system of two variational equations for displacement fields in the body parts adjacent to the interactive layer. The proposed approach eliminates the singularity in stress distribution in contrast to the mathematical cut model. Use of local strength criteria allows us to determine the time, point and direction of the fracture initiation. Possibilities of the proposed model are illustrated by solving the problems of determining the SSS of a rectangular body weakened by a physical cut under symmetric and antisymmetric loadings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.